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Abstract. A random tiling of rectangles and triangles displaying a decagonal phase is solved
by Bethe Ansatz. Analogously to the solutions of the dodecagonal square–triangle and the
octagonal rectangle–triangle tiling an exact expression for the maximum of the entropy is found.

1. Introduction

The discussion on the stability of quasicrystals has not yet resulted in a general consensus.
Even very recently, arguments against [1] and in favour [2] of the random tiling scenario
have appeared in the literature. It has also been suggested that the entropically stabilized
state results from quasicrystal growth [3]. From the point of view of statistical mechanics,
random tiling models are very interesting, not in the least because some of them allow
for an exact solution. This means that one is able to derive exact expressions for the
entropy and other thermodynamic quantities. In this paper we present a random tiling with
a decagonal phase which is solvable by the Bethe Ansatz (BA) method, very much in
analogy with the dodecagonal square–triangle and the octagonal rectangle–triangle tilings
[4–7]. The present decagonal model is the ensemble of tilings of the plane by rectangles
and isosceles triangles with sides of length 1 andl = 2 sin(π/5) = √2+ τ/τ , where
τ = (

√
5+ 1)/2 is the golden mean. Cockayne [8] devised an inflation rule for this set

of tiles that constructs a tiling with decagonal symmetry. This tiling corresponds to a
maximally dense decagonal disk packing under the condition that nearest-neighbour vectors
are limited to certain directions. Therandom tiling with additional constraints has been
studied by Oxborrow and Mihalkovič [9, 10] to model d-AlPdMn. More recently, Roth
and Henley [11] used the rectangle–triangle random tiling and some of its subensembles to
model decagonal quasicrystal structures resulting from a molecular dynamics simulation.

One of the main aims in statistical mechanics is the calculation of the partition sum
which, for random tilings, is the weighted sum over all possible tiling configurations. To
be able to enumerate all possible tilings we use the transfer matrix method, for which it is
convenient to transform the tiling to a model on the square lattice. This transformation is
depicted in figure 1. The triangles always come in pairs which are denoted by t1, . . . , t5
corresponding to their five different orientations. Similarly the five different orientations
of the rectangles are labelled by ri . The decorations on the deformed tiles are such that
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2142 J de Gier and B Nienhuis

Figure 1. Tiles of the the tenfold tiling with rectangles and triangles and their deformations to
the regular square lattice. The five different orientations of the pairs of triangles and those of
the rectangles are denoted by ti and ri respectively.

continuity of the decorating lines is equivalent to the restriction that the tiles fit together
without gaps or overlaps. In this way every decorated tiling of the lattice with the deformed
tiles corresponds to an allowed tiling of the plane by the original rectangles and triangles.
Using this transformation every vertex of the tiling falls on a vertex of the square lattice,
though the reverse is not true. The partition sum of the deformed model on the lattice is
now defined by

Z =
∑
C

5∏
i=1

r
Nri (C)
i t

Nti (C)
i (1)

where the sum is over all possible configurationsC. For a given configurationC, we denote
the number of deformed rectangles ri by Nri (C) and the number of deformed triangles ti

by Nti (C). The partition sum is thus a weighted sum where each deformed triangle ti and
each deformed rectangle ri is assigned a weightti and ri respectively. The partition sum
(1) is equal to the partition sum for the tiling, provided that one chooses the weights of
the deformed tiles properly [12]. The latter is a consequence of the transformation which
changes the areas of the various tiles differently.

The definition of the transfer matrixT of the deformed model is the obvious one on the
square lattice. The horizontal edges of the square lattice can be in one out of five possible
states, represented by the presence or absence of the decorating lines. The transfer matrix
elementTij between two sequencesi andj of such horizontal edges is equal to the product
of the weights of the deformed tiles that fit in betweeni and j . As is well known, the
partition sum per row in the thermodynamic limit is given by the largest eigenvalue of the
transfer matrix. The free energy is then given by the logarithm of this largest eigenvalue.

Recall that according to the random tiling hypotheses the entropy per area may be
written as [13]

σa = σa,0− 1
4K1I1− 1

4K2I2− 1
2K3I3 (2)

where theIj are the quadratic phason strain invariants for the 3× 2 phason strain tensor.
The aim of our work is to calculate the residual entropyσa,0 and the phason strain elastic
constantsKj . In section 3 we derive the BA equations that diagonalize the transfer matrix
for this model and which already give a huge reduction of the numerical problem. It turns
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out that for this tiling the method of Kalugin [5, 7] is applicable to solve these BA equations.
This then enables us to calculate the residual entropy for this tiling exactly. The calculation
of the elastic constants poses some problems and in this paper we will concentrate on the
maximum only. It will be shown that the maximum of the entropy per vertex of this
decagonal random tiling model is given by

σv = 1

2

(
log

55

44
− 2
√

5 logτ

)
. (3)

2. Degrees of freedom

In principle there are fifteen partial densities for this tiling, corresponding to the ten different
orientations of the triangles and the five different orientations of the rectangles. Since the
triangles always occur in pairs, we are left with ten degrees of freedom. One of these is
removed by the fact that the total area is constant. Furthermore, there are three nonlinear
geometrical constraints, so that the phase space of this random tiling is six-dimensional.
The geometrical constraints are derived in the following†. The first thing to note is that the
triangles can be viewed as domain walls between patches consisting solely of one type of
rectangle. This phenomenon is similar to what happens in the dodecagonal square–triangle
and the octagonal rectangle–triangle tilings. In our choice of decoration in figure 1 it is
easily seen that between patches consisting only of the tile r2 there are three different types
of domain wall, denoted by the full, dotted and broken lines. Two types of domain wall
run from bottom right to top left. They are drawn as full and broken lines and we denote
their number byn1 andn2 respectively. The other type of domain wall runs from bottom
left to top right and is drawn as a dotted line. Their number is given bym. We denote the
average number of triangles and rectangles per layer bynti andnri respectively. It is then
easily seen from figure 1 that

n1 = 1
2(nt3 + nt5)+ nr4 + nr5

n2 = 1
2nt1 + nr1 + nr5

m = 1
2(nt2 + nt4)+ nr3 + nr5.

(4)

Let p1 be the number of layers such that each dotted line crosses each broken line once.
The number of such crossings in this patch of sizep1N is then

n2m = p1(nr1 + nr5 + 1
2nt4). (5)

Similarly, if p2 is the number of layers such that each dotted line crosses each full line
once, andq is the number of layers such that each broken line crosses each full line once
we find

n1m = p2(nr3 + nr4 + 1
2nt5)

n1n2 = q(nr4 + nr5).
(6)

The numbersp1, p2 andq can also be calculated in another way. For this, it is convenient
to introduce the average shift per layer (s1, s2 andsm) of each domain wall. These are given

† This argument uses the periodic boundary conditions imposed by placing the lattice model on a cylinder. We
believe that for free boundary conditions modified versions of such constraints hold, involving the configuration
of the boundary.
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by

s1 = −1+ 1

n1
(nr5 − nr3 + 1

2nt5)

s2 = −1+ 1

n2
(nr1 − nr4 − 1

2nt4)

sm = 1− 1

m
(nr3 + nr5 − nr1 − nr4 + 1

2(nt4 − nt5)).

(7)

From the condition that each dotted line must cross each broken line once in a patch of size
p1N it then follows that inp1 layers the average relative shift of the domain walls must be
equal toN . The same arguments applied to the other cases then gives

N = p1(sm − s2) = p2(sm − s1) = q(s1− s2). (8)

Putting all these equations together, using the fact that the system sizeN = n1+ n2+m+
2(nr2 − nr5) one finds three independent relations among the tile densities. These can be
rewritten as follows

nt1(nt2 + nt5) = 2(nt4 + 2(nr4 + nr5))(nr1 + nr2)+ 2(nt3 + 2(nr3 + nr2))(nr1 + nr5) (9)

nt2(nt3 + 2(nr4 + nr5))+ 4nr5(nr3 + nr4) = nt5(nt4 + 2(nr3 + nr2))+ 4nr2(nr3 + nr4) (10)

which are symmetric under the simultaneous exchange of indices 2↔ 5 and 3↔ 4, i.e.
the mirror symmetry in they-axis. Other relations may be obtained from (9) and (10) by
applying a rotation over 2π/5, i.e. shifting each index by one. Only three of them, however,
are independent.

At the symmetric point each orientation occurs equally often, so we haventi = 1
5ntri and

nri = 1
5nrect, wherentri andnrect are the average total numbers of triangles and rectangles per

layer. It follows then from (9) and the expression for the system size that at the symmetric
point ntri = 10τ−4N andnrect = 5

2τ
−5N . Using (4) we find that these values correspond

with the following numbers of domain walls,

τn2 = n1 = m = τ−2N. (11)

3. Bethe Ansatz

In this section we derive the BA equations for the lattice model to diagonalize the transfer
matrix. Again we use the fact that the triangles can be viewed as domain walls. Since
these domain walls persist through the lattice we can think of them as being trajectories of
three types of particles, where each number of particles is conserved. The transfer matrix
T, acting in the upwards direction, can be thought of as an evolution operator for these
particles. Two types of the particles are then left movers whose trajectories are given by the
full and broken lines. We call them of type 1 and type 2 respectively. The other type is a
right mover and its trajectories are drawn as dotted lines. Because the number of particles
of each type is conserved,T is block diagonal in the particle numbers. In the following we
shall diagonalizeT in each block separately by using a nested coordinate BA [14].

A stateα on a row of the lattice can be specified by the positionsy1, . . . , ym of the
right movers and by the positionsx1, . . . , xn of the left movers with the specification that
the linesi1, . . . , in1 at positionsxi1, . . . , xin1

are of type 1. Elementsψ(α) of an eigenvector
of T thus can be written explicitly asψ(i1, . . . , in1|x1, . . . , xn; y1, . . . , ym). The state which
has no particles, i.e. the one with only the rectangles r2, is called the pseudovacuum. We
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make the following Ansatz for the form of the eigenvector,

ψ(i1, . . . , in1|x1, . . . , xn; y1, . . . , ym)

=
∑
π,ρ

∑
µ

A(0)B(µ)

n∏
a=1

zxaπa

m∏
b=1

wybρb

n1∏
c=1

[
dxic

ic−1∏
r=1

u(µc, πr)

]
(12)

where the sum runs over all permutationsµ = (µ1, . . . , µn1) of the numbers 1, . . . , n1, all
permutationsπ of the numbers 1, . . . , n and all permutationsρ of the numbers 1, . . . , m.
The coordinatesxa andyb enter the Ansatz (12) as powers of complex numbers,zi andwj
respectively, that are to be determined later. Factors in the eigenvector due to the order of
the different types of right movers are given by the expression between brackets in (12).
This is the so called nested part of the Ansatz which is a generalization of the simple power
for the coordinates. The indexic may be seen as the ‘coordinate’ of right movers of type 1
relative to all right movers. This coordinateic determines the upper limit of a product over
a complex valued functionu which may still depend on the numberszi . The Ansatz (12)
further contains an adjustable constantd whose presence will become clear below.

The amplitudesA depend on the permutationsπ andρ and on the configuration of the
left and right movers. These together are coded in a vector0 in the following way. Letp
be the vector of coordinatesxi andyj of all domain walls, ordered so thatpj < pj+1. The
entries of0 are the elements of the permutationsπ andρ. The order of succession in0
of elements taken fromπ andρ matches that of the elements ofx andy respectively inp.
The amplitudesB only depend on the permutationµ.

If all the domain walls are separated the action of the transfer matrix is just a shift of
each line to the right or to the left. The eigenvalue ofT corresponding to the vector (12) is
therefore given by

3 = r(N−n−m)/22 t
2n−2n1
1 t2m2 (t23d)

n1

n∏
a=1

za

m∏
b=1

w−1
b (13)

whereN is the size of the lattice. At places where different domain walls are close together,
the action ofT is not given by a mere shift of all domain walls. Whenever there is a right
mover just in front of a left mover and there are no other neighbouring walls, two things
can happen. Either the right mover jumps over the left mover, which does not move, or the
left mover jumps over the right mover, see figure 2. These exceptions imply the following
relations for (12) to be an eigenvector ofT

A(. . . , πk, ρl, . . .)

A(. . . , ρl, πk, . . .)
= r3d

t22
zπkwρl +

r1

t21
z−1
πk
w−1
ρl

(14)

and they put the following constraints on the weights

r3d = t24 and r3t
2
1 t

2
5 = r1t23 t24 . (15)

Figure 2. Two-particle collision diagrams. Upper line: two types of collision of walls of type
1 and 3. Second line: two types of collision of walls of type 2 and 3.
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The reason for the constantd in the Ansatz (12) is now clear: if it was omitted there would
be an additional constraint between the weightsr3 and t4. Scattering processes involving
three particles of only two different types give the following restrictions on the amplitudes
A,

A(. . . , πk, πk+1, . . .)

A(. . . , πk+1, πk, . . .)
= −zπk+1

zπk

A(. . . , ρl, ρl+1, . . .)

A(. . . , ρl+1, ρl, . . .)
= −wρl+1

wρl
. (16)

From these processes it also follows that the amplitudesB obey the equation∑
µp,µp+1

B(. . . , µp, µp+1, . . .)zπk (u(µp+1, πk)− u(µp+1, πk+1)) = 0. (17)

By the sum in (17) we mean a sum over both permutations of the numbersµp andµp+1.
A similar notation is used in the next two equations, which result from scattering processes
with three particles which are all of a different type∑
πk,πk+1

A(. . . , πk, πk+1, . . .)zπku(µp, πk)

=
∑
πk,πk+1

A(. . . , πk, πk+1, . . .)

(
r2r3r5

t21 t
2
3 t

4
4

z−1
πk
+ t

2
1r4

t23r1
zπk z

2
πk+1

)
. (18)

Equation (18) is satisfied (afterA is eliminated using (16)), ifu is of the form

u(µp, πk) = vµp +
r2r3r5

t23 t
2
1 t

4
4

z−2
πk
− t

2
1r4

t23r1
z2
πk

(19)

with any complex numbervµp . Substituting (19) into (17) it follows that the amplitudesB
fulfil the relation

B(. . . , µp, µp+1, . . .)

B(. . . , µp+1, µp, . . .)
= −1. (20)

Using periodic boundary conditions, it follows from the form of the eigenvector (12) and
the relations (14), (16) and (20) that the complex numberszi , wj and vk should obey the
following BA equations

w−Nj = (−)m−1
m∏
k=1

(
wj

wk

) n∏
i=1

(
t24

t22
ziwj + r1

t21
z−1
i w

−1
j

)
(21)

zNi = (−)n−1
n∏
k=1

(
zk

zi

) m∏
j=1

(
t24

t22
ziwj + r1

t21
z−1
i w

−1
j

) n1∏
l=1

(
vl + r2r3r5

t21 t
2
3 t

4
4

z−2
i −

t21r4

t23r1
z2
i

)
(22)

(−)n1−1 =
(
t24

r3

)N n∏
i=1

(
vl + r2r3r5

t21 t
2
3 t

4
4

z−2
i −

t21r4

t23r1
z2
i

)
. (23)

To rewrite the BA equations in a more suitable form we introduce the following variables,

ξ̃i =
(
r4t

4
1 t

4
4

r1r2r3r5

)1/2

z2
i ψj = −

(
r1r4t

4
2

r2r3r5

)1/2

w−2
j

ul − u−1
l =

(
r1t

4
3 t

4
4

r2r3r4r5

)1/2

vl.

(24)
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The BA equations then become

(−ψj)(N+n+m)/2 = (−)m−1C

n∏
i=1

ξ̃
−1/2
i

m∏
k=1

(−ψk)1/2
n∏
i=1

(ξ̃i − ψj) (25)

ξ̃
(N+n+m)/2
i = (−)n−1D

n∏
k=1

ξ̃
1/2
k

m∏
j=1

(−ψj)−1/2
n1∏
l=1

u−1
l

m∏
j=1

(ξ̃i − ψj)
n1∏
l=1

(ul − ξ̃i )(ul + ξ̃−1
i )

(26)

unl = (−)n1−1E

n∏
i=1

(ul − ξ̃i )(ul + ξ̃−1
i ) (27)

whereC,D andE are given by

C =
(
r1r4t

4
2

r2r3r5

)N/4(
r1t

2
4

t21 t
2
2

)n/2
D =

(
r4t

4
1 t

4
4

r1r2r3r5

)N/4(
r1t

2
4

t21 t
2
2

)m/2(
r2r3r4r5

r1t
4
3 t

4
4

)n1/2

E =
(
t24

r3

)N (
r2r3r4r5

r1t
4
3 t

4
4

)n/2
.

(28)

The eigenvalue in terms of these new variables is then given by

3 = rN/22

(
r1r3r5t

4
1

r2r4t
4
4

)n/4(
r3r5t

4
2

r1r2r4

)m/4(
t23 t

2
4

r3t
2
1

)n1 n∏
i=1

ξ̃
1/2
i

m∏
j=1

(−ψj)1/2. (29)

In summary we have shown in this section that the BA equations (25)–(27) with the
definitions (28) diagonalize the transfer matrixT for arbitrary choice of the weights except
for the one constraintr3t21 t

2
5 = r1t23 t24 . It thus follows that the point of maximum symmetry,

whereri = r for i 6= 2† and ti = t , is included in the spectrum obtained by this Ansatz.
The eigenvalue ofT in terms of solutions of the BA equations is given by (29).

4. Integral equations

To calculate the entropy, we putti = 1, r2 = eµ1 andr1 = r3 = r4 = r5 = eµ2. The chemical
potentialsµ1 andµ2 have to be adjusted so that all configurations in the original undeformed
tiling model are weighted properly. The difference betweenµ1 andµ2 compensates for the
fact that the area of the transformed tile r2 is twice that of the other transformed rectangles.
If we want to weight the original rectangles in the random tiling equally it follows that they
must satisfy [12]

µ1− µ2 = N−1 log3max. (30)

One finds numerically that the maximum of the entropy of the tiling model is at the point
of maximum symmetry, i.e. where all configurations are weighted equally, in agreement
with the first random tiling hypothesis [15]. According to (11) this is in the sector
n1 = m = τ−2N , n2 = τ−3N , corresponding to tile fractionsnrect = 5

2τ
−5N and

ntri = 10τ−4N .

† We need to tuner2 to compensate for the change in area induced by the transformation to the lattice.
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Figure 3. Distribution of roots for the largest eigenvalue (N = 89, n1 = m = 34, n2 = 21).
The left curve corresponds to the rootsψi and the outer right curve corresponds to some subset
{ξi} of the rootsξ̃i . The inner right curve actually consists of two curves corresponding to the
rootsui and the subset of the rootsξ̃i complementary to{ξi}. Note that the inset is not on scale.

It is also observed numerically that each of the rootsul approximates one of the roots
ξ̃i in exponentially good precision, see figure 3. For reasons that will become clear below,
we define the rootsξi now as the subset of the rootsξ̃i not approximated by one of theul
and we introduce the following notation

sξ =
n2∏
i=1

ξ
1/2
i sψ =

m∏
j=1

(−ψj)1/2 su =
n1∏
l=1

u
1/2
l . (31)

By writing ξ̃ = ul + εl for those roots̃ξ that are approximated by one of theul and using
the above abbreviations, equation (26) splits up in the following two sets of equations,

ξ
(N+3n1+n2+m)/2
i = (−)n2−1Dsξ sus

−1
ψ

m∏
j=1

(ξi − ψj)
n1∏
l=1

(ξi − ul)(ξi + u−1
l ) (32)

(uk + εk)(N+n1+n2+m)/2 = (−)n1+n2−1Dsξ sus
−1
ψ

m∏
j=1

(uk − ψj + εk)

×
n1∏
l=1

(ul − uk − εk)(1+ u−1
l (uk + εk)−1). (33)

Similarly, substitutingξ̃ = u+ ε into (27) results in

(−)n1−1E−1u
n2
l =

n1∏
k=1

(ul − uk − εk)(1+ u−1
l (uk + εk)−1)

n2∏
i=1

(ul − ξi)(ul + ξ−1
i ). (34)

In the thermodynamic limit allεk vanish exponentially inN . Equation 34 can then be used
to remove the product over the variablesu in (33) and we arrive at the following equation
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which approximates the original BA equation (33),

u
(N+n1−n2+m)/2
k = (−)n1−1DE−1sξ sus

−1
ψ

m∏
j=1

(uk − ψj)

×
n2∏
i=1

(ξi − uk)−1(uk + ξ−1
i )−1+O(e−N). (35)

Consider now the BA equation (25) as a function ofψj . Taking the logarithm on both sides
of (25) we define the functionFψ by

Fψ(z) = log(−z)− 2

N + n1+ n2+m
[ n2∑
i=1

log(ξi − z)+
n1∑
l=1

log(ul − z)

−1

4
Nµ1+ 1

2
(n1+ n2)µ2− log

sξ su

sψ

]
(36)

so that ReFψ(ψj ) = 0. Similar functionsFξ (z) and Fu(z) are defined by taking the
logarithm of equations (32) and (35) respectively. The BA equations (25), (32) and (35)
are then equivalent to

1
2(N + n1+ n2+m)Fψ(ψk) = 2π iIk
1
2(N + 3n1+ n2+m)Fξ (ξk) = 2π iJk
1
2(N + n1− n2+m)Fu(uk) = 2π iKk

(37)

where Ik, Jk andKk are either integers or half-integers. From numerical calculations it
follows that the numbersIk, Jk andKk for the solutions of the BA equations for the largest
eigenvalue are consecutive, more precisely

Ik = 1
2(m+ 1− 2k) (k = 1, . . . , m)

Jk = 1
2(n2+ 1− 2k) (k = 1, . . . , n2)

Kk = 1
2(n1+ 1− 2k) (k = 1, . . . , n1).

(38)

We will assume that (38) holds in the thermodynamic limit.
It is for this reason that we introduced the variablesξ instead of ξ̃ . The function

analogous to (36) defined from (26) does not take consecutive multiples of 2π i when
evaluated at the roots̃ξk.

It is clear from (38) that the derivativesf of the functionsF are up to a factor precisely
the densities of the BA roots. They allow us to transform the sums in the logarithmic form
of the BA equations into integrals. For brevity we define

α = 1+ 3Q1+Q2+Qm

1+Q β = 1+Q1−Q2+Qm

1+Q (39)

whereQ = Q1 +Q2 +Qm. Taking into account the root distribution (38) we thus arrive
at the following integral equations for the functionsf ,

fψ(z) = 1

z
+ α

2π i

∫ ξn2

ξ1

fξ (ξ)

z− ξ dξ + β

2π i

∫ un1

u1

fu(u)

z− u du (40)

fξ (z) = 1

z
+ β

2π iα

[ ∫ un1

u1

fu(u)

z− u du+
∫ −u−1

n1

−u−1
1

u−2fu(−u−1)

z− u du

]
+ 1

2π iα

∫ ψm

ψ1

fψ(ψ)

z− ψ dψ

(41)



2150 J de Gier and B Nienhuis

Figure 4. Schematic picture of the solution curves of the BA equations.

fu(z) = 1

z
− α

2π iβ

[ ∫ ξn2

ξ1

fξ (ξ)

z− ξ dξ +
∫ −ξ−1

n2

−ξ−1
1

ξ−2fξ (−ξ−1)

z− ξ dξ

]
+ 1

2π iβ

∫ ψm

ψ1

fψ(ψ)

z− ψ dψ

(42)

where the integrals are taken along the locus of the rootsξ , ψ andu and−ξ−1, −ψ−1 and
−u−1. These integration contours in the complex plane are schematically shown in figure 4.

5. Monodromy properties

From the integral equations it is immediately seen that the integration contours are cuts in
the complex plane of the functionsfξ (z), fψ(z), fu(z), z−2fξ (−z−1), z−2fψ(−z−1) and
z−2fu(−z−1). Each of these functions has jumps across some of the cuts whose magnitudes
are given by linear combinations of the above six functions. The analytic continuation
across the cuts of these functions is now determined by compensating for the jump and can
be written in terms of monodromy operators, one for each cut. The analytic continuations
across the different cuts of a functionG(z) =∑i=ξ,ψ,u(aifi(z)+ biz−2fi(−z−1)) are given
by the following matrices which act on the vectora = (aξ , aψ, au, bξ , bψ, bu),

0ψ = I − α−1E21− β−1E23

0ψ−1 = I − α−1E54− β−1E56

0ξ = I + αE12− αβ−1(E13+ E16) (43)

0ξ−1 = I + αE45− αβ−1(E43+ E46)

0u = I + βE32+ βα−1(E31+ E34)
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0u−1 = I + βE65+ βα−1(E61+ E64)

where I is the 6× 6 unit matrix andEij is the matrix with a 1 at theentry ij and 0’s
everywhere else. As a result, several linear combinations of the six functions, following
from these monodromy operations, correspond to different sheets of the Riemann surface
of one function.

The continuation of a functionG(z) starting at and returning to the origin across all of
the six curves is given by the monodromy operator0 = 0ξ−10u−10ψ0ξ0u0ψ−1 which has
the property that05 = 1. This means that if the curves in figure 4 have the same endpoints,
say b for the common endpoint in the upper half plane andb∗ for that in the lower half
plane, that function is single valued in terms of the variables:

s(z) =
(
zb−1− 1

1− zb∗−1

)1/5

z(s) = b 1+ s5

1+ bb∗−1s5
. (44)

When the BA curves have the same endpoints,0 is the only non-trivial monodromy operator
and the Riemann surface ofG(z) breaks up into infinitely many disconnected parts each
with only five sheets. These are all mapped onto the plane by (44), from which it is easily
seen that, apart from the branch pointsz = b andz = b∗, each point in thez-plane has five
images on thes-plane. As can be seen from figure 3, for the largest eigenvalue the curves
do indeed have the same endpoints, in particular they meet atb = −b∗ = i. The situation
is rather similar to what happens in the square–triangle [5] and the octagonal rectangle–
triangle tiling [6], where also the BA curves close, but there the monodromy is of order
6 and 4 respectively. Although we do not understand the deeper reason for this, it will
become obvious in the sequel that the order of the monodromy must relate to the symmetry
of the tiling to produce the right quadratic irrationalities.

In the following we show that the closing of the curves enables us to calculate the
largest eigenvalue explicitly. Note that the six curves can only have the same endpoints if
b = −b−1 = i (see figure 4) in contrast to the square–triangle and the octagonal rectangle–
triangle tiling, where the common endpoints need not lie on the imaginary axis. We will,
however, use the notationb = i|b|eiγ for the common endpoint of the curves, for it may
turn out in the future that for infinitesimal values ofγ still something can be said.

Aside from the cuts, the formGdz has only simple poles atz = 0 and atz = ∞.
The poles and their residues of the single-valued function are thus given by the poles and
residues on each of the sheets. The functional form ofG(z) on other parts of the sheet and
on the other sheets is directly determined by the monodromy operators (44). In particular,
the value of the residues can then be read off from the integral equations (40)–(42). We
chooseG(z) to be equal tofψ(z) nearz = 0 on the sheet withs(z) = s1 = eiπ/5. Its form
nearz = 0 on the sheets withs(z) = s2k−1 = e(2k−1)iπ/5 is obtained by applying0k. The
functional forms of the functionG(z) nearz = ∞ on the sheets withs(z) = s2k = e2i(kπ−γ )/5

are obtained by analytic continuation, i.e. by applying0ξ0u0ψ−1 on each of the functions
corresponding tos2k−1. The polessn and residuesRn thus obtained of this functionG are
shown in table 1.

The formG dz is now uniquely determined by its poles and residues,

G dz =
10∑
n=1

Rn

s − sn ds. (45)

Recall that we are working with approximated BA equations which are valid for the largest
eigenvalue, for whichQ1 = Qm = τ−2, Q2 = τ−3 and thusQ = 1. We do not presently
know if the approximation is valid for other sectors as well. The closing of the three curves
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Table 1. Poles and residues of the formG(z) dz. The two columns on the left list the poles
of G(z) dz on thez- and s-planes respectively. The third column gives the functional form of
G(z) near those poles and the fourth column the value of the residues of these poles.

z sn G Rn = Res−1(Gdz)

0 eπ i/5 fψ(z) 1

∞ e2i(π−γ )/5 fψ(z)+ βfu(z) −2(1+Q2)
1+Q

0 −e−2π i/5 βfu(z)− αz−2fξ (−z−1) 2
1+Q

∞ −e−i(π+2γ )/5 −αz−2fξ (−z−1)+ z−2fψ(−z−1)
−2Q1
1+Q

0 −1 z−2fψ(−z−1) − 1+Qm−Q1−Q2
1+Q

∞ −ei(π−2γ )/5 z−2fψ(−z−1) 1

0 −e2iπ/5 z−2fψ(−z−1)+ βz−2fu(−z−1)
−2(1+Q2)

1+Q
∞ e−2i(π+γ )/5 βz−2fu(−z−1)− αfξ (z) 2

1+Q
0 e−iπ/5 −αfξ (z)+ fψ(z) −2Q1

1+Q
∞ e−2iγ /5 fψ(z) − 1+Qm−Q1−Q2

1+Q

at b = i (γ = 0), however, is a fact that only holds for the largest eigenvalue. The above
arguments for calculatingG dz therefore are valid for this sector only, for whichG dz is
given by

G dz = (se−2iπ/5+ s−1e2iπ/5)τ−1 dz

z
. (46)

6. Solution of definite integrals

In this section we calculate some definite integrals of the form (46), resulting in an exact
expression for the maximum of the entropy. To remove singularities in the expressions to
follow, we introduce the following forms

gn dz = R2n−1

s − s2n−1
ds. (47)

In thez-plane we can calculate the following integrals using the fact thatb = i is a solution
of the BA equations and that we have a precise control of the singularity atz = 0 by using
the mapping (44) to thes-plane.

J1,0 = Re

[ ∫ 0

b

(fψ(z)− g1) dz

]
= Re lim

s→eiπ/5
[Fψ(z(s))− log(s − eiπ/5)]

= log 5
2 −N−1 log3+ µ1

1
2 − µ2τ

−2 (48)

J2,0 = Re

[ ∫ 0

b

(βfu(z)− αz−2fξ (−z−1)− g2) dz

]
= log 5

2 − 2N−1 logsψ + µ1
1
2τ
−1− µ2τ

−2 (49)

J3,0 = Re

[ ∫ 0

b

(z−2fψ(−z−1)− g3) dz

]
= −τ−2 log 5

2 +N−1 log3− 2N−1 logsψ − µ2τ
−3 (50)

J4,0 = Re

[ ∫ 0

b

(z−2fψ(−z−1)+ βz−2fu(−z−1)− g4) dz

]
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= −2τ−1 log 5
2 + µ1τ

−1− µ22τ−2 (51)

J5,0 = Re

[ ∫ 0

b

(−αfξ (z)+ fψ(z))− g5) dz

]
= −τ−2 log 5

2 + µ1
1
2τ
−2− µ2τ

−3 = 1

2τ
J4,0. (52)

The same integrals on thes-plane restricted to the symmetric point are, using (45),

J1,0 =
10∑
n=2

Rn log |eiπ/5− sn| = τ logτ − log sin(2π/5)

J2,0 = τ logτ − log sin(2π/5)

J3,0 = −τ−1 logτ + τ−2 log sin(2π/5)

J4,0 = −2 logτ + 2τ−1 log sin(2π/5)

J5,0 = −τ−1 logτ + τ−2 log sin(2π/5).

(53)

Equating both sets of integrals gives the following solution

4τ−1sψ = µ1− (1+ τ−3)µ2 = N−1 log3− τ−3µ2

= 1

2

(
log

55

44
− 2
√

5 logτ

)
. (54)

Note that this solution precisely corresponds to the maximum of the entropy for the original
tiling model according to (30). The total number of rectangles per site,Qrect= nrect/N , on
the symmetric point is5

2τ
−5, so that the entropy per site is given by

σN = N−1 log3− 1
2τ
−5(µ1+ 4µ2) = 5

2τ
−2(N−1 log3− τ−3µ2). (55)

The number of vertices per sitenv is given by

nv = 1
2Qtri +Qrect= 5

2τ
−4(2+ τ−1) = 5

2τ
−2. (56)

Thus, the entropy per vertexσv is finally given by

σv = N−1 log3− τ−3µ2 = 1

2

(
log

55

44
− 2
√

5 logτ

)
. (57)

7. Conclusion

In this paper we showed that a decagonal random tiling model of rectangles and triangles is
solvable using the BA technique. We derived the BA equations that diagonalize the transfer
matrix for this model. These equations contain all information about the model and they in
principle present a huge reduction of computational problems concerning the system size.
For this tiling model however, some of the roots of the BA equations almost coincide,
which makes it difficult to extract high-precision data. On the other hand, it enabled us
to write down approximate BA equations which are exact at the symmetric point in the
thermodynamic limit. Using these equations we were able to find an exact expression for
the maximum of the entropy. The validity of the approximation outside the symmetric point
still has to be further investigated. We hope to be able to find analytic expressions for the
phason elastic constants as well, although in contrast to the solutions of the dodecagonal
square–triangle [4, 5] and the octagonal rectangle–triangle [6, 7] it is not apparent if our
solution can be extended off the symmetric point. Recently, Kalugin [16] showed for the
square–triangle model that also critical exponents may be calculated exactly from the BA
equations.
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